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ABSTRACT

An N-component parallel system is subjected to a known load program.
As time passes, components fail in a random manner which depends on
their individual load histories. At any time t , the surviving com-
ponents share the total load according to some rule. The system's
lifetime distribution is studied under various breakdown rules.
Under the linear breakdown rule it is shown that if the load program
is increasing the system lifetime is IFR. Using the notion of Schur
convexity, stochastic comparison of different systems is obtained.
It is also shown that the system failure time is asymptotically nor-
mally distributed as the number of components grows large. All these
results hold under various load sharing rules, in fact, one can prove
that the system lifetime distribution is invariant under different
load sharing rules.

For a more general breakdown rule only the equal load sharing is
considered. The asymptotic distribution of the system lifetime is
shown to be normal. The asymptotic mean and variance are derived.
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CHAPTER 1

INTRODUCTION AND SUMIMARY

This report is concerned with the study of parallel systems whose

components are subjected to a certain nonnegative time dependent load.

Consider a parallel system of n components. The system sustains

a certain load (damage, wear) which varies in time, and thus each

functioning component is exposed to a certain fraction of this load.

As time passes, components fail in a random manner which depends on

the amount of damage they have been exposed to. As the single compo-

nents fail one by one, each of the surviving components is exposed to

an increasing share of the total load. This model is known in the

literature as the "load sharing model" and has been treated previously

by Coleman (1958), Birnbaum-Saunders (1958) and more recently by

Phoenix (1978). Coleman adapted this model in connection with the

strength behavior of fiber bundles and his theoretical results were

remarkably consistent with the experimental behavior of a variety of

structural materials. Birnbaum and Saunders used the model to study

the "Fatigue" of materials under conditions involving dynamic loading.

They also reported a very good agreement with empirical data. Phoenix

(1978) adapted Coleman's assumptions about the stochastic behavior of the

single component under a given load program. He made use of Stigler

(1974) paper to show that the system failure time is asymptotically

normally distributed as the number of components grows large and thus

generalized Coleman's results which dealt with the calculation of the

asymptotic mean time to failure. All previous study assumes that all
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the components are identical, that is each individual component has

the same stochastic behavior under a same load program. Furthermore,

the surviving components at any time t are assumed to share the total

load equally.

In this report we generalize these assumptions. We allow the

components to be nonidentical and for some special case to share the

total load in a fairly general way.

In Chapter 2 we adapt the linear breakdown rule that was essentially

used by Birnbaum-Saunders. Loosely speaking, if a single component is

subjected to a time dependent load program, the failure rate of the com-

ponent at any time t is linear in the load at t . Birnbaum-Saunders

were interested in certain statistical aspects of the system (e.g.,

estimating the number of components in the system and the deterioration

factor of the individual component). We focus on the stochastic

characteristics of the system. Among other things we prove that the

components lifetimes are stochastically associated, that if the system's

load program is nondecreasing, its failure time is IFR. Using the

notion of Schur convexity, we obtain stochastic bounds on the system

lifetime distribution. Asymptotic results are also available as the

number of components in the system grows large. All these results are

shown to hold under a fairly general load sharing rule. In fact, we

prove that the distribution of time to system's failure is invariant

under the load sharing rule.

In Chapter 3 we adapt Phoenix model and generalize it to the

nonidentical component case. We obtain asymptotic results similar to

those in Phoenix (1978) and also point out an unjustified statement in

his paper and give our version for it.
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CHAPTER 2

THE LINEAR LAW BREAKDOWN RULE

Consider a system of N components in parallel which are being

subjected to a nonnegative time dependent load L (') . At any time5

t , all the surviving components share the load according to some rule.

In the first three sections of this chapter, we assume that they share

the load equally. This assumption is removed in Section 2.4, where

we consider a more general rule. Thus for the time being, if i

(i < N) components have failed prior to time t , the actual load on

each of the N - i surviving components at t is L (t)/N - is

Component i (i = 1,2, ..., N) subjected to a known load

program 1(.) has a random failure time Ti . Throughout this

chapter we assume that under 1(-) the distribution of Ti is of

the form:

t

-6i f l(u)du
Fi(t Il ) = i - e 0

where is a strictly positive constant which characterizes the

durability of component i

If we define

fi(t I 1) d Fi(t 1) and

fi(t i)

xi(t I I) - F (t ) t 0

then it is easy to check that Xi(t I i) - il(t)
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x t11) is the failure rate function of component i under the known

load program 1(-) . It can be interpreted as the instantaneous prob-

ability of a t years old component i to fail, that is, component

i having not failed prior to time t and sustaining load 1(t) will

fail during the interval (t , t + At) with probability a il(t)At + 000t

where o(At) denotes remainder terms of order less than At as At -~ 0

For the obvious reason we say that the component obeys the linear law

breakdown rule. As a system, the components lifetimes are, therefore,

strongly dependent but only through their failure rate functions. For

instance, if at t there are j (1 < j < N) functioning components and

a component fails, then under the equal load sharing rule the load that

each of the surviving components sustain changes instantaneously from

L s(t )/j at t to L s(t)/j - 1 at t

2.31 The Joint Distribution of Components Lifetimes

We denote by T1 9T 2 $ ... I T N the lifetimes of components 1,2,

N respectively and by T T <..< T their order

statistics. We assume that the system is being subjected to a non-

negative load program L C t) and that each component obeys linear

law breakdown rule. Each of the components is being characterized

by its proportional factor a (Birnbaum, Saunders (1958) called it

the deterioration factor) which is assumed to be strictly positive

number. The system itself is being characterized by its load program

L ()and by the vector
5

The above assumptions lead to the following facts:
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(2.1) For any i (i 1,2, .... N)

L (t)
P(T E (t, t + At) I T(1) 

>  = N At + o(At)

as At 0

(2.2) If 0 < t 1 < t2 <*.. < tk < t , k < j < N , and {nl,n 2 , ... , nN }

is an arbitrary permutation of {1,2, ..., N} , then:

P(T E (t , t + At] T n, tI, .... T nk tk , T(k+l) > t

L (t)

- At + (At)
n. N- kJ

as At 0

Facts (2.1), (2.2) tell us that if exactly k (k = 0, ..., N - 1)

components failed by time t and component j is not among them,

then the failure rate of j at t is

L (t)
S

j N- k"

From (2.2) we also learn that the order in which the components failed

does not affect the failure rate of component j , as long as it is

given that n - j survived t and j is among them.

Lemma 2.1:

1 + ... + N t

N f L (u)du

P(T(I) > t) = e 0
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Proof:

From (2.1), it is obvious that the failure rate function of T is(1)

L (t) NSN

Q.E.D.

Lemma 2.2:

Let 0 < t < t < ... < k < t , k < N and let {nl,n, ... , n

be an arbitrary permutation of {1,2, ... , N} Then for x > 0 we have

P(T~k~) > t + x T n= t I , ... , Tnk t k , ) > t

n + + t+x

exp - k N- k n Ls (U)d

Proof:

Follows from (2.2) in a straightforward way.

Q.E.D.

Lemma 2.3:

{ti } , ini } as in Lemma 2.2 and let dt denote the infinitesimal

interval (t , t + dt) , then for x > 0

P (T E dt , (k+l) t + x T n t i t ... , T = tk -1 ' T(k) > t

N n n n_ 1.tl-i kL) > =N k + 1 L s(t) exp k N -k f L s(U)du dt

t
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Proof:

P T ETdt T(k+l) >t+x T t I .... , Tnkil tk 1  T T(k )

P(T(k+l ) > t + x IT = t i , .... , T = tk I , Tnk =tkI , Tn = t

T(k+l) > t) P(Tn k E dt I Tnl = tl ... I T nk-i = tk I , T(k) >t

Combine (2.2) and Lemma 2.2 and the result follows.

Q.E.D.

We are now ready to state the following theorem:

Theorem 2.1:

Consider the simplex 0 < tI < ... < tN  and let {nl,n, ... , nN } be

a permutation of (1,2, ..., NI , then

P(Tnl E dt,T n2 E dt2  -.- TnN E =

N r
jJl JnVl n sUi u

exp nfLMdu

N! N..+ t 2 t

+ N N L s (u)du
SLs()d+. N -

tI tN I
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Proof:

P(Tn 1 d t ... , T nN Ed) =

-N E T d T, E. Cdt T

P(Tn EN T TN _-N-I T(N) > tN

dtN_ , T > tN I t E dtI .... T Ed 2 ,
(n N- 1  n N N  n I1 -l' nN_-2 2

T (N-i) > tN-1)

x P(T N E dt , T(2) > t 2 I T( 1 ) > t,)

x P(T( ) > t )

Combine Lemmas 2.1, 2.2, 2.3 and the result follows.

Q.E.D.

Corollary 
2.1:

If = = = , then the density function of T(N )  is

given by

(i (u)du
Ls( f Ls(U)du

fT (t) N NLs(t) (N -i) e
(N)

Proof:

By Theorem 2.1, we have that on 0 < t1 < ... < tN

t

N(T T- f L (u)dup(T(1) C- dtl, ... , T(N) E d tN) n LN L(tj) dtj e 0s

(j=l sj j
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Integration yields the result.

Q.E.D.

In fact, this result can be obtained directly from the simple

observation that if the a's are equal then

P(r(i ) E dt I T() ... (i_) , T(i)

=oLs(t)dt on T(il ) < t

on T(i-l) > -

Thus the ordered sequence of failure times T( _ T < T

behaves like a sequence of "events" taken from a nonhomogeneous Poisson

process with intensity function L s(-) , and

P(T(N) < t) = Pr [there are at least N events of the Poisson

in (0,t]}

t

N - [j= (- 6 fsu ) j l L L (u)du

and d P(T < t) yields the result.
dt (N) -t

Let us now define the random process L(t)

L s(t)/N 0 < t < T(1)

Ls(t)

(2.3) L(t) = NS-i T <t < T i 1,2 ... ,N -
N -)- (i+l)

L s(t) t > T(N )

s (N).. .
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and let

T.1

(2.4) Q f = L(u)du , i = 1,2, ... , N

0

Thus intuitively, Qi is the total load sustained by component i

during its lifetime.

Theorem 2.2:

The random variables Q'Q2' "' QN are independent exponentially

distributed with rates I,,2' . N respectively.

Proof:

The joint density function of the Q's can be written in terms of

the joint density of the T's

fQ(qlIq2 ' ..., qN) = fT(tlt 2 ' -. tN)li- 1-i

a (ql t ..... q, N

where ti = ti (ql, .... q) , i 1,2, ... , N and mIJII = a(t ... , tN)

is the Jacobian of with respect to t

Now consider the simples 0 < q, < ... < qN and let tlt 2, ... ,

tN be such that
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= I Ls (u)
ql f N du

0

q q, + Ls  u
2= + f du

ti1

tN

qN q N-1 + f Ls(u)du

tN-I

Clearly t1 < t2 < ... < tN  and the joint density function of QI, ... QN

on the above simplex is

f~~q~~q~. B L BL(t (q1l, q))ei]jI
fq (ql' ... q N ) 

- i. 
N!

By simple calculus we also have

Ls(t1 )

N-
L . s(t 2 .

.i . . . . . . . . . .'." .tLs (t N )
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and hence

N
IT L (t i )

l j I = i=l s 1

H1lI N!

Thus on 0 < q < ... < qN the density on the Q's is

N q
f(ql ..... qN) - N .eRJ=l

It is fairly easy to check this argument holds for an arbitrary simplex

of the form 0 < qn1 < ... < , where {nl,n ..... n N } is a

permutation of {1,2, ... , N} . Thus the joint density function of

Q'Q ..... QN is given by

N - aiq i

fNQl2 "'' QN(q l  ... qN) = e .e i >  0 , i = 1,2, ... , N

Q.E.D.

The importance of this theorem is that it establishes the existence of

a transformation jL 9 L : (T1, .... TN) - (Q * ... QN) which under a
s s

given load program Ls () maps the random vector T with dependent com-

ponents into q with independent components. This fact enables us to

analyze most of the parameters of the system in terms of independent random

variables. Indeed, throughout the next two sections we use this fact to

find conditions under which the system lifetime is IFR, obtain bounds
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for the system's reliability function as well as to establish the

asymptotic distribution of the system's lifetime as N , the number

of components, increases to infinity.

We start with proving the rather intuitive fact that the life-

times of the individual components (TI, ..., TN) are associated, but

first some necessary preliminaries.

Definition:

We say that the random variables Z1,Z 2 9 ..., Zn are associated if:

Cov (f(Z),g(Z)) > 0 for all nondecreasing functions (f,g) for which

the covariance is well defined. We use Z for (Z1  ..., Zn ) .

For completeness we start with the following properties of associa-

tion:

(P ) Any subset of associated random variables are associated.

(P2) If two sets of associated random variables are independent

of one another, then their union is a set of associated

random variables.

(P3) The set consisting of a single random variable is associated.

(P4) Nondecreasing functions of associated random variables are

associated.

(P5) Independent random variables are associated.

From the way L : (T1 9 "..' TN) - (Q9 .... QN) is constructed,
s

it is clear that if the load program Ls () is strictly positive

-l
for each t , L is one to one and hence L is also well

s s

defined. Now in order to prove that (T,T 2, ..., TN) are indeed

. ... .. . . . .. ,mj
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-1
associated, it suffices to show that 'L is nondecreasing, that is,

Ls

TI(QI , . ..., QN) , ..., TN(Q .... I QN) are all non-

decreasing.

Lemma 2.4:

-1
If L (') > 0 , then is well defined and increasing

s

functional.

Proof:

The first part follows easily from the way PL is constructed.
Ls

-1
To show that 'L : (q1 .... q N )  (t1l .... tN) is increasing func-

s

tional, denote by q(1 ) < < q() and t(l)< t(2 )<_ .<t

the increasing rearrangement of ql' ...' qN ' tl ... I tN respectively.

Under , t (1) (ql . . qN),t(2) (ql .... , q N ) ' .. . t(N) (ql, ... ,I qN )

s

are such that

t

q(1) s  du

0

t(1 ) Ls(U(2) Ls (u)
q m ) du + C -- du

(2) f N f N - 1
0 t

(1)

q (N) f N du + ... + f Ls(u)du

0 tN- 1
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Now fix all q's and increase q(,) by the infinitesimal increment

dq(i) . It is easy to check that for j < i , t(j) remains unchanged.

For t M we have

ts(t i))

d s (i) dtd(i) =N -i + 1 Mri

To find dt(i+l )  note that

L s d(ti ) =) d iLs(t )

dq + N i dt(i+l) N - i d(i)

or

Ls(t(i )) dt~i

dt L s(t W (iM
(i+l) L s t(il )) N - i + 1

and indeed for k > 1

L (t M dtLsti) ti k = 1,2, N - i
dt(i+k) - Ls(t (i+k) N - i + I

which completes the proof.

Q E.D.

Corollary 2.2:

The components lifetimes T1, ..., TN  are associated.

Next we show that under increasing load program the system lifetime

is IFR.
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Definition:

A nonnegative random variable X with distribution F(.) is said

to be IFR (or equivalently is said to have an increasing failure rate

distribution) if log (1 - F(x)) is concave where finite.

If F also possess a density f(.) , then it is easy to check that

the above is equivalent to saying that X(t) = f(t) is non-
1 - F(t)

decreasing on {t : F(t) < 1}

Lemma 2.5:

Let g be an increasing differentiable function and let (X,Y)

be two random variables such that Y - g(X) and suppose Y has a

failure rate function \y , then the failure rate function of X

is given by \X(t) = ky(g(t))g'(t)

Proof:

fx(t) fy(g(t))g'(t)

x 1(t) - Fx(t) = I - Fy(g(t)) = Ay(g(t))g'(t)

Q.E.D.

Theorem 2.3:

If the system load program L (-) is nondecreasing, then the system
s

lifetime is IFR.

Proof:

Let Q,,Q 2  ... QN be as defined in (2.4), then check that

T
N (N)

Qi = f Ls(u)du
i-I
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N
Now since the Q's are independent IFR, so is Q i and by Lemma 2.5

i=l

we have

xT (N (t) XZQ (LS(u) Ls(t)
()

Hence X is nondecreasing.XT(N)

Q.E.D.

2.2 Schur Functions and System Reliability

The method and concept of majorization and Schur functions are used

in this section to make stochastic comparison between systems with

different components (that is, components with different s-factor) and to

develop conservative bounds for the system lifetimes. For the sake of

completeness we review some of the definitions and tools of majorization

and Schur functions:

Given a vector x = (xl, ..., Xn ) let X[1 > X[n]

denote the decreasing rearrangement of xl,x9 , ..., x
n

Definition:

A vector x is said to majorize a vector x' if

x[i ] > [1] for j=l, ... n -1i-il i-i i

and

n n
i-i i-i ]

m
We write x > x'
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Although majorization involves comparison of vectors of order n

the following characterization shows that we need only consider a pair

of coordinates at a time.

Theorem 2.4: (Hardy, Littlewood, Polya, 1952, p. 47)

m

Let x > x' . Then x' can be obtained from x by finite

number of T-transformations, where a T-transformation changes two

coordinates only, and in the following way. If for example coordinates

1 and 2 are being transformed, then T(y) = (yl,y2,y , ..., vn ) where

max {yly 2) > max {Y',y2
} and Yl + Y2 = Y{ + Y2 - Furthermore we

have y > T(y)

Majorization represents a partial ordering in IRn A Schur

function is a function that is monotone with respect to this partial

ordering, more formally:

Definition:

m
A function h(-) satisfying the property that x > x' implies

h(x) > (<) h(x') is called Schur convex (Schur concave) function.

A useful characterization of Schur functions is provided by the

fundamental theorem of Ostrowski (1964) which states:

Theorem 2.5: (Ostrowski)

A differentiable, permutation invariant function h on is

Schur convex (Schur concave) iff

(xW- x )(j. 3ohprov 0 for all i foj

We use this to prove the following:
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Theorem 2.6:

If X1 , X2 are independent exponentially distributed random

variables with rates Xi 0 X2 respectively and Xj , X2 are independent

exponentially distributed with rates A' i respectively, and if
m

(A1 ,12 ) > (AL,2A) , then for any t > 0 P(X> + > t) > P(X{ + X >t)

Proof:

By using the Ostrowski Theorem it is not difficult show that

-x2t -xit

P(X1 + X2 > t) 2 211 -x1
1 X1 X2

is Schur convex in (A1 ,A2 )

Q.E.D.

Corollarv 2.3:

If XI,X 2, ... , X and YI,Y 2, ... , Y are two sets of independent

1n 1n
m

respectively and if X > ' , then for any t > 0

P(X1 + ... + X > t) > P(YI + .. + Y > t)

Proof:

Use Theorems 2.4, 2.6 and the well known fact that if X, X2

are independent and Xi , X are independent, and for any t , P(Xi > t) >

P(Xi > t) , i = 1,2, then for any t : P(XI + X > t)P(X{ + X > t)

Q.E.D.
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Remark:

Proschan and Sethuraman (1974) proved Lemma 2.6 using a slightly

different approach.

Corollary 2.4:

Fix t > 0 , then

P(T Ls (u) du >

0

is Schur convex function in (a1,21 .

Proof:

T (N)

SLs(U)du = 1 + + QN

0

which are independent exponentially distributed with rates i1, . N

respectively.

Q.E.D.

Corollary 2.5:

Fix t > 0 , then P(T(N ) > t) is Schur convex function in

(N

Proof:

Follows from Corollary 2.4

Q. E. D.

hh€
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The following theorem provides a lower bound for th- survival

probability of a system under an arbitrary load program Ls(.)
S

Theorem 2.7:

Let

N
N

then for any t > 0

t

-~f L (ud
P(T(N) > t) > e 0 S N-1 L(u)du)](N =0 tsu!

Proof:

m
First note that 0 1 , .... , , ... , ). The result

follows from Corollaries 2.1, 2.5.

Q.E.D.

2.3 Asymptotic Distribution of System Lifetime

In this section we obtain the asymptotic diztribution of the system

lifetime. We show that under certain conditions the system lifetime

normalized properly tends in distribution of the standard normal as the

number of components increases to infinity.

Definition:

Let XIX 2 s ... be a sequence of independent random variables such
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that ~ ~ thissrbtino F and E[X] 0 E X 2 1

thatK th isrbtsno k k ' k =k

k = 1,2,....

Let

S = x + ... + X , s2 = G2 + + 2
n n n n

We say that the sequence {Xk} satisfies Lindeberg Condition iff for

each E > 0 :

+ 2 f x dFk(x) - 0 as

s n lxl>tsn

The following are well known theorems that we will use later on:

Theorem 2.8: (Lindeberg-Feller)

If Lindeberg Condition holds, the distribution of the normalized sums

S
tends to the standard normal as n -

s
n

S
We write _a - N(0,1) for convergence in distribution.

S
n

Theorem 2.9: (Slutzky)

If Xn  tends in distribution to X and (A , {B n } are

two sequences of random variables converging in probability to a , b

(constants) respectively, then A X + B tends in distribution to

nn n

aX+ b
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Corollary 2.6: (Slutzky)

Suppose that an  is a sequence of constants tending to , b

is fixed number, and a n(Xn - b) D X . Let g be a differentiable

function, then an(g(Xn) - g(b)) D g'(b)X

Theorem 2.10:

Let X,X2 ... be independent exponentially distributed random

variables with mean e1,e2, ... respectively and suppose that there

exist 0 < L < U constants such that for each n : L < e < U,

then (X - e n satisfies Lindeberg Condition.
n n

Proof:

The distribution of

t/ek

Fk(t) 1 - e , t > 0

and hence for A > 0

fdF(x W e-A/e k(A 2 + 2A6, + 2e 2)
X>A

Now since 6k are uniformly bounded, check that for n large enough

e.g., n > (j)2) it suffices to consider only the right tail of the

x's that is,
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y. (X -O~Fx 1 a fk (x- a dF Wx
sk.1 fkkx k-i fk
n 1X -6k i> . S n n  k-6 k- E s n

but

n (x - k) 2 dF kX)
s k=l k

n x-6 k>-s

I n f x2dF (x)
s k=k
n x>cs

n

in CS/k 2 2 2)2 1 e E s +2cs 6 +26
s k=l

n

I C-vrLU /2 2 r-2 2\
-e - / nU + 2cnU + 2U

nL
2

2 e-(SL/U)n(2U2 + 2eU 2/vn + 2U2 /n)

which vanishes as n -

Q.E.D.

Corollary 2.7:

Suppose that there exist 0 < A < B such that for any n , A < 8 < B

then:

T(N

SLs(u)du- i/6j
0 j=l V

0 N(0,1) as N -

I( -- !1



25

Corollary 2.8:

Let e -. Suppose that 0 6 + o as k-* and
k k k r

0 >0.

Then T N
( L s (u)du

N - N(0,6
2 )

Proof:

The first term equals

T(N) N
f Ls(u)du _

N × =IN

N (.. N

( N ~ k-/N)
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As N a kl k/N) 1 and the second term 6 8k/N - 6 0

and by Slutzky theorem, the result follows.

Q.E.D.

Example 1:

Suppose that L (t) L s constant) and 8k = + oi as k

where 8 > 0 the asymptotic distribution of the system lifetime T(N)  is

(T (N(N)

N Q) N(0,(e/L,)2) as N

Example 2:

Suppose that L s(t) = 6t , 6 > 0 , and the {e k  are as in Example 1.

Then

AF(IT2N - 6)V N(o,e 
2 )

Use now Corollary 2.6 to show that:

T(N) - N - N(0,0/26) as N -

The interesting thing about this example is that for linear load program

the asymptotic mean of T(N) , E[T (N)] whereas the asymptotic

variance is constant.
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2.4 More General Load Sharing Rules

A close study of Theorems 2.1 and 2.2 shows that the equal load

sharing rule used throughout the previous sections is not essential for

the derivation of most of the results so far. It seems that a system of

components which obey the linear law breakdown rule is invariant, in

some sense, with respect to the load sharing rule. In this section we

assume a fairly general rule and prove that a modified version of

Theorems 2.1 and 2.2 holds. Thus, using similar arguments as before

we obtain similar results (i.e., IFR, Schur convexity, asymptotic dis-

tribution). In fact, we show that no matter how the total load is being

distributed among the functioning components, the lifetime of the s-Stem

remains stochastically the same.

Thus for instance, in analyzing the mechanical breakdown in bundles

of fibers the "local load sharing" rule received some attention in the

literature. The rule here is that every time a fiber fails, the adjacent

fibers take on its load, we show that this system does not differ much

from the equal load~ sharing system or from a system that allocates the

total load to a single component at a time.

Again, oy T929...,1 T Nwe denote the lifetimes of components

1,2, ... , N respectively and T~l I T (2 1. '' T (N)are their order

statistics. N(t) is the number of components that failed by time

t (t > 0) . Let H denote the history of the system at time t
t

that is, H tis the a-field of events generated by the events of the

form T n< t1 ,T n< t 2 9 ... ,9 T n t k IN(t) - k1  where t i t

i - 1,2, .. ,k , k < N and {n1, ... I nN} is an arbitrary permutation

of (1,2, .. ,N)



28

Now suppose that for each t > 0 there exist random variables

L (t),2(t), ..... aN(t) which are Ht measurable and satisfy the

following:

M(i) i(t) > 0 1 , ... , N

(ii) i(t) = 0 on T i  < t , i 1, ..., N

N(iii) ai ) W 1 on T (N) ' t
i=l ()

(iv) The sample path a.(.) is measurable.

The vector a(t) = (al(t), .... cN (t)) is the distribution program at

time t , that is, if the load program of the system at t is L (t),

then component i (i = 1,2, ... , N) sustains at t load ai(t)L s(t)

and hence the failure rate of component i at t is 8iai(t)L st)

Since ai(t) is a random variable, we should interpret the failure rate

in this case as:

1

lim - P(Ti E (t , t + h] Ht ) = H ii(t)L (t) w.p.l

h- 
+

It should be also clear that the atoms of Ht  (i.e., the elementary

events) are of the form: T t5 ..., Tn tk , N(t) = k and
I k

since ai (t) is Ht measurable, it is constant on these atoms. We

denote the numerical value of a.(t) on T tl .... Tk tk

N(t) - k by ai(t ,T t1  Tn k tk N(t) = k

This is a generalization of the equal load sharing rule we treat in

Section 2.1 where ai(t ) was there just N - Nt on {T. > t}

i N Nt
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All other assumptions about the model remain the same.

We are ready now to state and prove lemmas and theorems similar to

those in Section 2.1.

Lemma 2.6:

P(T(1) > t) = epja.(u N(u) O)d
~01

Proof:

Clearly for A > 0:

N
O a (t , N(t) O)A + o(A)

j=l

P(T(1 ) E (t , t + A] I H) = as A 0 , on {T( ) > t

0 , otherwise.

Thus the result follows by a similar way as in Lemma 2.1.

Q.E.D.

Lemma 2.7:

Let 0 < t < t 2 < ... < t < t , k < N , and let {nI, ... N be

an arbitrary permutation of {1,2, ..., N} , then for x > 0

P(T~kl > t + x T I= t1 9T = . .. T =tk N(t) =k)

T (k+l) n ' n 2 = nk = k

exp t+x N TLi(uT n t, ..., Tn tk  , N() = k)L(u)d
il 1 kt
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Proo f:

Similar to Lemma 2.2.

Q.E.D.

Lemma 2.8:

{ti } , {ni} , k , as in Lemma 2.6 and let dt denote the infinitesimal

interval (t , t + dt] , then for x > 0

T E dt T(k+l) > t + x I Tn 1  ... I T -P nk 1-,=t I .. nk_

tkl , N(t) -k - )

Snk(t Tn tl, ... T - tkl , N(t) k- 1 L(t)

x exp (jaj u , n t I .... Tnk tk N(u) k du dt
I~~ t 1

Proof:

Similar to Lemma 2.3.

Q.E.D.

The following generalizes Theorem 2.1.

Theorem 2.11:

Consider the simplex 0 < t<t 2 <... < t and {n.} is as in
1 2 N

Lemma 2.6 then:
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P(T n E dtI  T.. TnN E dnt ) n [nLs (t1)a n1(t, N(tl)1 0)dtl

× n N n L (t) (tj , T , tl, ... , T = t.
j 2 nj 3 1 j-

N(tj) - - dtj]

" exp - f jaa(u , N(u) = O)Ls (u)du
0S

+ I ~ 8a(u , T n t I , N(u) - 1 L (u)du + ... +
j i j n1

t1

I N

t fu , T tl ... T = N- N(u) N - 1)Ls(U)du

tN- 1

Proof:

Similar to Theorem 2.1 using here Lemmas 2.5, 2.6, and 2.7.

Q.E.D.

As in Section 2.1, we define here the vector (WIW2, ..., WN) where

T.

Wi - f cl(u)Ls(u)du , i = 1,2, ..., N

0

Thus, the W's are the total loads sustained by components 1,2, ... , N

The following generalizes Theorem 2.2:

Theorem 2.12:

The random variables W ..., WN  are independent exponentially

distributed with rates 8,12, ... , 8N respectively.
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Proof:

Very similar to the proof of Theorem 2.2.

Here is the sketch of it. Consider the simplex 0 < t :S t2  "

<t N  and (nI, ..., nJ a permutation of 1, ..., N , then on

ile til ... I T t) the vector (W, , ... , W ) assumes the

values

Wn- anl(u N(u) = 0)Ls (u)du- wn

t I

W n=f n 2(u , N(u) = 0)Ls (u)du

0

t2

+ f 2 (u) , Tn = tl , N(u) = 1) Ls(u)du Wn2

tI

etc.

Hence the joint density function 
of W at the point w is just

f wnI n *~tl ... I ) =
fw I , ... w-

fT ,I ...,I T n l.. , N)  t ,  , t
I N

Check that

R Ls(t )% ( t , T t , . . T

tj-i ' N(tj)
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where the first term in the product should be interpreted as

L s(t )an (tl I N(t) 0) . Combine this with Theorem 2.11 to

obtain

N -aw
fW(w 1 ' .. w Q = fl .e w > 0.

j=1 3

The above theorem provides us with most of the results that we

obtained for the equal load sharing rule. For completeness we state

them here without a proof. Throughout the rest of this section fix

L s(.) and let {l(t) : t > 0} be fixed and satisfying conditions

(2.3). Note that under these conditions

T(N) N

Ls(u)du = [ W.
i=l

0

Theorem 2.13:

If L (-) is nondecreasing, then the system's lifetimes is IFR.
s

Theorem 2.14:

Fix t > 0 , then P(T(N) > t) is Schur convex function in

N

Corollary 2.9:

N
N L ai , then for any t > 0
i-il
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t N-i L uMdu)i
-f L suMdu i=

P(T (N) ' t ) > e 0#

Theorem 2.15:

Suppose there exist 0 < A < B (constants) such that for any

n >1 A < < B, then

T(N) Nf LMudu -I /
0 j=1 j(0 D) N(0,1) as N -

Theorem 2.16:

Let 6 k,/ k - 1,2, ... , N .Suppose that

a k + O(i-) as k -~~and e6>0

then

f L s(u)duasN 
.

(\J N a N(0,8 ) a
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CHAPTER 3

GENERAL BREAKDOWN RULE

In this chapter we generalize the assumption about the breakdown

rule. Whereas, in the previous chapter we consider only a linear-

power breakdown rule, here we allow it to be quite general. We basically

adapt the model which was treated by Coleman (1957, 1958) and more

recently by Phoenix (1978). In all previous studies, the models

assumed parallel system of identical components. Here we generalize

it and study systems of non~lentical components.

We again consider an N-component parallel system which is subjected

to a nonnegative time dependent load program L (.) . Thus the nominals

load per component is L (t)/N . Throughout this chapter at any times

t > 0 , the surviving components are assumed to share the load equally.

If we denote by N(t) the number of components that failed prior to

time t , the actual load carried by each of the N - N(t) surviving

components at t is L s(t)/N - N(t) . Hence the actual component

load program is i stochastic process which we denote by

L(t) Ls(t)/N - N(t) on N(t) < N

k sL(t) on N(t) = N

Each component, therefore, is being subjected to L(t) up to its time

of failure after which its load is being distributed equally among the

rest of the surviving components.

Assumptions about the individual components: Component i (i =

2, ... , N) when it is being subjected to a known load program 1(-)
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has a random failure time T. which is distributed according to

11
F .(t l(),where

- 4 K(l(u))du

(3.1) F .i(t 1 1(-)) 1 - e 0 1 , t > 0

where i , i = 1, ..., N , and K satisfy:

(i) for each i , is increasing, continuous, i(0) = 0

(ii) K is positive increasing, unbounded (i.e., K(-) =

and has continuous derivative K'(.)

-'pi(x)

If we denote by Gi(x) = 1 - e 1 = 1, ..., N ,then G.

is a distribution on the positive line and F.(t I 1) = G i( K(l(u))du)

If is also differentiable, then under a known load program 1(.)

component i possesses a failure rate function:

(3.2) xi(t I 1) = ( K(l(u))d K(l(t))

Note that in this case the failure rate function contains two factors

t(l )Ii K(l(u))du) which characterizes the effect of the load history

and K(l(t)) which characterizes the effect of the present load. As

in the previous chapter we should emphasize that the components life-

times are stochastically dependent, but only through their failure rate

functions (see introduction to Chapter 2).
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Our approach is similar to the one used by Phoenix (1978). We

will show that the system lifetime (under certain load programs) can

be expressed as a linear combination of order statistics of independent

random variables with known distribution function. To obtain the

asymptotic distribution of the system lifetime (as the number of com-

ponents increase to infinity) we use Shorack (1973), Stigler (1974),

and some more recent result of Wesley (1977) which also points out an

error in the original version of Stigler. The error in Stigler's paper

leads to an unjustified statement in Phoenix's paper which we will point

out and give a correct version.

3.1 Preliminaries

In this section we review some of the results obtained in Shorack

(1973) and Stigler (1974). Our interest in these papers derives from

the fact that our result leans heavily on them. Their results are

quite general which is more than we need, thus we shall bring only a

modified version which fits our case.

Let X ,X X be a nonnegative triangular array of rowLe n,1 n2' "'' Xn,n

independent random variables having continuous distribution fucntions

n
Fn,1 ,Fn2, ..., Fn,n and Fn = n  Fn'i and let X(n,l) - X(n,2)

< X(n,n) be their order statistics. Shorack and Stigler were

interested in the asymptotic (as n c) distribution of:

S nI Cn,iX(n,i)

n n i=l

where C are known constants.n,i
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If we define J non [0,1] by

n n,i n - n

J (0) C Cj

then

n

Sn n i/) (n,i)

Now suppose the following conditions hold:

1. Let J be continuous on (0,1) and suppose J n~ J uniformly

on [ , 1-el , as n-* for each e >0.
-l -l -

2. For some F ,F (t) - F (t) for each continuity point t
n

of F-

3. J , J nare uniformly bounded on (0,1)

4. F (t) < D(t) ,F n(t) < D(t) for 0 < t < 1 ,where

D(t) = M41t(l - t)] + 6 for some 6S > 0

Then:

Theorem 3.1:

If conditions 1, 2, 3, 4 hold, then

i/-(S - "ny N((2)

where
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1

=f Jn(u)FnI (u)du
0

G 2 =J J(s)J(t)K(ts)dF-l(t)dF-'(s)

00

and

K(s,t) = s At - limn n Fni F-1(t) F F(S)
n-*i i=l

Proof:

Shorack (1973), Theorem 3.1.
2
a can be rewritten as

2 = f f J(F(x))J(F(y))r(x,y)dxdy

00

where

in
r(x,y) = lim n [F n,i(x A ) - F n,i(x)F n,i(y)]

Q.E.D.

Theorem 3.2:

If the above conditions hold, then

1

ESn -n f J(u)F-1(u)du as n -

0
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3.2 The Result: (The Asymptotic Distribution of T(N) as N -)

We denote by TIT2' ..., TN the lifetimes of components 1,2,

N respectively and by T(1),T(2 ) , ... T(N)  their order statistics.

We assume that the system is being subjected to a nonnegative load

program Ls () and that each component obeys the breakdown rule given

in 3.2. (That is, we assume that ' i = 1, ..., N exists and the

failure rate function under a known load program of an individual com-

ponent is given by 3.2.) To begin with, we obtain the joint density

function of TV , ... ,P T N  under L s(-) using an approach similar to

the one in the previous chapter. The assumptions of the model described

before lead clearly to the following facts:

(Fl) For each i (i = , ...1 , N)

TE dt I T( Kt) 0 Ls (U) )d KLs(t) dt

(F2) If 0 t 0 < t1 < t2 < ... < tk < t k < j < N and

nI , .... N1 is an arbitrary permutation of U1, ..., NJ

then

PL (Tn E dt I Tn, tI ... , Tnk tk , T(k+l) 
> t)

K(L(ut 1 , .... tk))d)N- dt

where
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L s(t)

N-3 t j < t < t+l

L(u,t 1  ... tk )  j - 0,1, .... k - 1

L S(t)
N t >tk

and dt is the infinitesimal interval (t , t + dt]

The following lemmas are a direct consequence of (Fl),

(F2) and their proofs are similar to Lemmas (2.1), (2.2),

(2.3) which we omit here.

Lemma 3.1:

PL (T(1) > t) e

Lemma 3.2:

Let 0 - tO < t < t2< < tk < t k < N and let nI, ..., nN

be an arbitrary permutation of 1,2, .. , N , then for x > 0 we have:

(k+) > t + x I T n t ... , Tnk = tk , T(k+l)> t

N i j(tP K(L(u,t
I, .... tk))d -

e-k+l1

f K(L(ut 1, ..., tk))d

where L(t,t1 , ..., tk) is defined in (F2).
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Lemma 3.3

{ti } , Ini }  as in Lemma 3.2 then for x > 0

PLs(Tnk E dt T (k+l) > t + x I T = ti, ... , T = tk 1 , T(k)> t)

= K(L(u,ti, ..., tkl))d K L 1)dt

We are now ready to obtain the joint density function of T i, ..., TN

Theorem 3.3

Let {n I , iti } be as in Lemma 2, then

PLs(Tni E dti i N)

11 ' K(L(u,ti ... It N))d) K(L(ti,tI , t))t

-PL( K(Lu,ti ..... tN))d

xe

where

Ls(U)

) .. t i  i u < t + 1  0,1, N I
L(U'tL ... ' N (u) u > t N
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Proof:

Combine Lemmas 1, 2, 3 in a similar way as in Theorem 2.1.

Q.E.D.

Next we generalize Theorem 2.2 to this model:

Consider L(tT(1 ),T( 2)' ..., T(N)) where L is as defined above

and {T()} is the order statistics and defined by:

T

(3.3) Qi f K(L (uT() .... , T (N) )) du

0

then the following theorem is a general version of Theorem 2.2:

Theorem 3.4:

£he random variables Q is ... QN are independent and distributed

according to GI, ... , GN respectively, where

G i ) W I - ex _> 0 .

Proof:

We prove it by obtaining the joint density of Q1, . QN " Since

K(.) is (by assumption) increasing and the equal load sharing is applied,

then under Ls () > 0 the mapping defined in (3.3) is one to one and

hence the joint density of Q., "''' QN can be expressed in terms of the
joint density function of TIT ... , TN  Let {nl, ..., nN } be an

arbitrary permutation of i, .... N} , if fQ Q and
nI N
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f T ,.. T are the joint densities of the Q's and T's re-

spectively, then f f f1I

n nN n i nN

where lul (ql, q.* tN) Now consider 0 < q< q <

( q,..) le 2t <. < besuch
to find f (1 ... I N lt1<t 2 <..<tNbesc

Qn QnN

that,

=f K(N~

0

t2

= +f (~~..-)du

ti1

t N

q - + f K(L s(u))du

It is easy to see that it Iare uniquely defined and furthermore,

K(Ls~l))

K s( t s N))
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Thus:

f Q Q .. Qn(q '  '' q4) -f f T , .,T (til ...'I tN) IIJ 11- 1

n1 n 1n N

N - n. (qi)
f H 'P (qi) e  ,0 < ql < q2 ' < qN

i=l 1 < N.il i

Since this argument holds for any arbitrary {n.1 , the proof is

complete.

Q.E.D.

Remark:

The above theorem holds even when the *i's are not differentiable.

This theorem, as we pointed out before, is the adaptation of Theorem 2.2

to the more general model and its importance is that it enables us to

express T(N ) -- system lifetimes as a weighted sum of Q(1) ' .. N --

the order statistics of the Q's , then use Stigler's results to derive

the asymptotic distribution of T(N )  as N -- . The same approach

was used by Phoenix (1978) to derive the asymptotic results for the

identical-component system.

With the function K(.) mentioned in (3.2) we associate the

function

1- 0 <x< 1, X >0

(3.4) V(xI) = K

0 , x 1

From the assumptions about K(.) , it follows that ax (x,X) E'(xX)

is decreasing and continuous on [0,1]
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To illustrate the method we will first consider the case in which

the system load program L (t) -L (constant). Thus if TI , • , TN

and Ql, "''' QN are as defined in (3.3) and if T(1),T( 2), ... , T(N)

Q(1) ..... Q(N) are their order statistics then under Ls(t) = NL

(constant) we have:

T(I) = 4(OL)Q(1)

T - (i) 4f ,L Q(i+l) - Q(i)j i = 1,2, ... N - 1(i+l) M

thus

N
T(N)=N i L)-Q(,)

We define

JN(x) = NI 0(i N 1 ,L)- i-1 x<

(3.5)

NI Nl

Then

T 
1 N

(N) N il JN(N)Q(i)i=l

and furthermore:

Lemna 3.4:

J - '(,L) uniformly in [0,1] as N -
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Proof:

By assumption, ~'is continuous and hence uniformly continuous

in [0,11 . By the mean value theorem 3 t~ (E i such that

n ~~kZiL -= -' (~,L ,so for each x E [0,1] 3 t with

it - x1< 1/n such that I-0'(x,L) J J(x)I = I-40'(x,L) + (,~

which by the uniform continuity of -0' is uniformly small as n -

Q.E.D.

In fact T(N) can be rewritten in the following way

(N N ~'(t iL)Q~i

for some it Ni}

NNi i-

Corollary 3.1:

(U I are uniformly bounded on [0,1]

Theorem 3.5:

Suppose that the following hold:

(i) *For some G G n (t) G~ G(t) for each continuity point

of G- 1 where

n n~

and {G Iare from Theorem 3.2.
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(ii) G-, G are bounded above by M[t(I - t)]-  for some

6 >0 , M> 0

Then under the constant load program L = NLs

(T (N) - IN) D N(O, 2 1 as N -

where

1

"N =f JN(UGun
l ( u ) du

0

and

a2 tff 1' (sL)'(t'L)K(st)dG(t)dG- 1 (s)

00

where

K(s,t) = s A t - liml Gi(G 1 (t))G i(G'(s))
n- n i=l

Furthermore the asymptotic mean of T(N ) is given by

1
Sf -0' (u,L)G-l1uMdu.

0

Proof:

All conditions of Theorem 3.1 hold.

Q.E.D.
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In his paper, Phoenix obtained similar results for the identical

components case. However, he went on to conclude that ,n(T = )

D 2
). N(O,oa) . Unfortunately, this is not a direct consequence of the

above theorem, unless one shows that ET (n) = + o(i ) as n-

Stigler (1974) addressed this problem (see Theorem 4 there) but as it

turned out his argument was not complete (see for instance Stigler

(1979) or Wesley (1977)). Thus as far as we can tell, Theorem 2 and

Corollary 1 in Phoenix (1978) still need to be justified. One possible

solution was provided by Shorack (1972) (see Example 1), which can be

stated as follows:

For the identical component system (i.e., G. = GV i) under a
L 1

constant load program L = NL

Theorem 3.6:

(i) For some r > 0 , fxrdG(x) <

(ii) For some 6 > 0 , M > 0 , I1'(x,L) < M[t(l - t)] r

(iii) 4''(.,L) exists and continuous on (0,1) and

1 "x,)J< M[t(l - t)]2r

then

D 2(T(N -i). N(O,o 2 ) as N-
(N)

2where U. , o are as in Theorem 3.2.

-L i II i . .. . - . .
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Proof:

See Example 1, Shorack (1972).

Q.E.D.

Next we show how to derive similar results for a more arbitrary

load program. To avoid complicated expressions, we restrict ourselves

P
to the power-law breakdown rule (i.e., K(t) = (Kt) ,p> 1 and

suppose L st) = Nl(t) , thus 1(t) is the nominal load per component.

By the definitions of {Ti) M Q we have

T (1)

Q(1) f [Kl(u)] Odu

0

(i+l) - QMc f (l() d , i , . ,N

T.M

thus

T(1

f Mlu))Y0du = K_ Q(1 )
0

f lMu)) Pu (1 K 1/)P[Q(i+1) Q (1)

and

M lu)) du [( K- ) - (i )
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Define: p(x,k)= (1 ))P

Theorem 3.7:

If the conditions of Theorem 3.2 hold, then

2

where pN a 2 are as defined in Theorem 3.2. Suppose 1() > 0

and if

t

h(t) =f [l(u)]pdu , t > 0
0

then h-  is well defined and

Corollary 3.2:

Y9 (TN - h-1 G N i(0, (.d hl'(p.))2 2) as N -

2
where 4 , 1N a 2 as in Theorem 3.2.

Proof:

The above is a special case of Slutsky theorem.

Q.E.D.
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